Monster Questions - Set 5

Question 1

$$y = x^3 - 4x^2 + 4x + 3$$

(a) Find $\frac{dy}{dx} = 3x^2 - 8x + 4$

y 1 2 x

The diagram shows a sketch of the curve with equation $y = x^3 - 4x^2 + 4x + 3$ The point P is a turning point on the curve.

(b) Work out the coordinates of P. Show clear algebraic working.

$$(3x - 2)(x - 2) = 0$$

 $x = 2 \qquad = x^{3} - 4x^{2} + 4x + 3$ = 8 - 16 + 8 + 3 = 3

(2)

(c) Write down the range of values of x for which the curve has a negative gradient.

P is directly proportional to q^3 P = 270 when q = 7.5

(a) Find a formula for P in terms of q

$$P = kq^{3}$$

$$270 = k \times 7.5^{3}$$

$$k = \frac{270}{7.5^{3}} = \frac{16}{25}$$

$$P = \frac{16}{25} \times 9^{3}$$

(;

(b) Work out the positive value of q when P = q

$$P = \frac{16}{25}$$
 q^{3}
 q^{3}
 q^{2}
 q^{3}
 q^{3}
 q^{2}
 q^{3}
 q^{2}
 q^{3}
 q^{2}
 q^{3}
 q^{2}
 q^{3}
 q^{2}
 q^{3}
 q^{2}
 q^{3}
 q^{4}
 q^{5}
 q^{5}
 q^{5}

Gemma has 9 counters.

Each counter has a number on it.

Gemma puts the 9 counters into a bag.

She takes at random a counter from the bag and does not replace the counter. She then takes at random a second counter from the bag.

(a) Work out the probability that the number on each counter is an even number.

9 Sodd
4 even
$$\frac{4}{9} \times \frac{3}{8} = \frac{12}{72}$$

 $= \frac{1}{6}$

(b) Work out the probability that the number on the first counter added to the number on the second counter gives an odd number.

(2)

Diagram NOT accurately drawn

P, Q, R and S are points on a circle, centre O.

QS is a diameter of the circle.

QS and PR intersect at the point T.

OS = 5 cm, QT = 3 cm and TR = 6 cm.

Work out the length of PT.

Here are 7 cards.
Each card has a number on it.

1	2	2	3	3	3	4

Harry takes at random two cards.

(a) Calculate the probability that the numbers on the two cards are the same.

$$2,2 \rightarrow \frac{2}{7} \times \frac{1}{6} = \frac{2}{42}$$

$$3,3 \rightarrow \frac{3}{7} \times \frac{2}{6} = \frac{6}{42}$$

$$\frac{8}{42} = \frac{4}{21}$$

(b) Calculate the probability that the sum of the numbers on the two cards is 5

(3)

1,
$$\frac{1}{7} \times \frac{1}{6} = \frac{1}{42}$$

4, $\frac{1}{7} \times \frac{1}{6} = \frac{1}{42}$

2, $\frac{1}{7} \times \frac{3}{6} = \frac{6}{42}$

3, $\frac{3}{7} \times \frac{2}{7} = \frac{6}{42}$